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@ Importance of Snow o N

* Snow is a significant contributor to terrestrial freshwater supply

— Up to 80% of runoff in some Western states

» Vital resource for >1 billion people worldwide
— Not exactly sure how much snow is out there
— Difficult to measure; significant uncertainty;

* Global warming — rising snow line

— reduced virtual reservoir; accelerated hydrologic cycle;

after

before

Runoff o

Time
ESTO




NERSIT)

NASA Decadal Survey B 'A

» Global warming — rising snow line — reduced virtual reservoir
* (Goal is to improve snow mass estimation at regional / continental scales
— No dedicated snow mission

— Water security — food+energy security — national security

TABLE S.1 Science and Applications Priorities for the Decade 2017-2027

Science and Applications Science and Applications Questions
Area Addressed by MOST IMPORTANT Objectives

Coupling of the Water (H-1) How is the water cycle changing? Are changes in evapotranspiration and

and Energy Cycles precipitation accelerating, with greater rates of evapotranspiration and thereby
precipitation, and how are these changes expressed in the space-time distribution of
rainfall, snowfall, evapotranspiration, and the frequency and magnitude of extremes
such as aﬂﬁts and floods?
(H-2) How do anthropogenic changes in climate, land use, water use, and water
storage interact and modify the water and energy cycles locally, regionally and
globally and what are the short- and long-term consequences?
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Satellite-derived Snow “Information”

Radiometer, Tb
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NOTE: Optical imagery, thermal imagery, and gravimetry not considered in this study.
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Trade-off Space: Coverage vs. Resolution ‘; o g

Revisit Time [arbitrary units]

Revisit Time [arbitrary units]

— FOV=15deg
—— FOV =30deg

\QS )

>

>

Total Number of Satellites [integer value]

Altitude =400 km
Altitude = 700 km
Altitude = 1000 km

—

Instrument Elevation Angle [arbitrary units]

* Explore trade-off between
engineering and science
* Field-of-View (FOV)?
 Platform altitude?
* Repeat cycle?
* Single platform vs.
constellation?
* Orbital configuration(s)?
* Tradespace Analysis Tool for
Constellations (TAT-C)
* Le Moigne etal. [2016]
* How do we get the most
scientific bang for our buck?
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Trade-off Space: Swath Width vs. Coverage "%,

1- day Coverage 30—day Coverage
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(Snow / (Snow /
Land+Ocean) Land+Ocean) Land+Ocean)
Wide Swath LiDAR 5.4% / 3.9% 15% / 11% 55% / 55%
C-band SAR 40% / 28% 79% / 65% 96% / 91%

Passive MW Radiometer 98% / 89% >99% / 99% >99% / 99%
CSTO




Geophysical to Observational Space
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@ NASA Land Information System (LIS) @@E

IRyL

* Models land surface processes (including snow)
 Integrates satellite-based observational data products with land
surface modeling and data assimilation techniques

Kumar et al. (2006), Land Information System: An interoperable framework for high resolution land surface
modeling, Environmental Modeling and Software C 57_. o




Research Objectives @@Z

Science and mission planning questions

1) What observational records are needed (in space and time) to
maximize terrestrial snow experimental utility?

2) How might observations be coordinated (in space and time) to
maximize this utility?

3) What 1s the additional utility associated with an additional
observation?

4) How can future mission costs be minimized while ensuring
Science requirements are fulfilled?
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Observing System Simulation Experiment (OSSE) "% 4

Nature Run TAT-C Machine Learning “Emulat
Snow Depth & SWE Permutation of
over North America Orbit(s) + Sensor(s)
; Sub-sample ¥ Th, O, and 8h .
LIS + MERRA2 in space /time Operators

- model-based
representation
- best estimate

- includes cost - inject known
estimate and risk analysis observation error

LIS Open Loop milatior Land Validation Toolkit (LVT)

| | _Openloop (ie,noassimilation) |1 _ _ L genchmark

\ evaluation against
Data Assimilation »  “Nature Run”

LIS + GLDAS

- apply representative B.C. error .

- no assimilation (a.k.a., Open Loop) (merge w/ synthetic obs.)

- with assimilation (merge with L Y

observations from suite of sensors)
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Synthetic Snow Depth Retrieval Results B VA
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Research Summary @@3/

Global snow mission will require evidence of achievable
science via OSSE . . . or some other means

NASA LIS provides “nature run” plus assimilation
framework

TAT-C provides spatiotemporal sub-sampling of
observations, including cost estimates and risk
assessments

Machine learning maps model state(s) into observation
space (1.e., Ty and ay)

Snow OSSE is on-going . . . production runs in process.
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Thank You!

Questions and/or
comments”?
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Spatiotemporal Variability
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SVM Mathematical Framework (1 of 2)

For parameters C' > 0 and ¢ > 0, the standard (primal) form is:

1 m
minimize — w)+ C i +
w, 5, & € 2 ; G+
subject to (W-o(x;))+0—2; <e+&

Zi—(W'¢(X¢)>—5SE+£f
6275: Zoai:1727"'7m

where m is the available number of T}, measurements in time (for a
given location in space), z; is a T, measurement at time 4, and £ and

&" are slack variables.
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SVM Mathematical Framework (2 of 2)

Primal optimization is commonly solved in dual form as:

minimize

a;, o

subject to

—aj) (8(xi) - B(x;))

z+a )_Zzz

(O‘i_a;‘k)zoa

l\Dlr—L

v

1=1
a;,a; €[0,Cl,i1=1,2,....m

where «; and o are Lagrangian multipliers, (¢(x;) - ¢(x;)) is the
inner dot product of ¢(x;) and ¢(x;), € is the specified error

tolerance, and C' is a positive constant that dictates a penalized loss

during training.
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Motivation Methods Results Conclusions qgusm}
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